Emergence of Linguistic Abilities
Emergence of Linguistic Abilities

Edited by

Sophie Kern, Frédérique Gayraud
and Egidio Marsico

Cambridge Scholars Publishing
TABLE OF CONTENTS

List of Tables and Illustrations ... viii

Acknowledgements .. xvi

Introduction ... 1
Barbara L. Davis

Part I : Ontogeny / Phylogeny

Chapter One ... 12
On The Different Applications Of Haeckel’s Biogenetic Law
In Language Origin And Evolution Studies
Nathalie Gontier

Chapter Two .. 30
Children gesture before beginning to talk: some questions raised
from an evolutionary perspective
Michèle Guidetti

Chapter Three .. 43
The gestural origin of language and its lateralization: theory and data
from studies in nonhuman primates
Jacques Vauclair and Adrien Meguerditchian

Part II : Phonetic and phonological development

Chapter Four .. 60
From proto-syllabic frames to first words: an audio-visual survey
of Two French children from 6 to 16 months
Claire Lalevée & Anne Vilain

Chapter Five .. 80
When the *Speech Frame* meets the *Sign Frame* in a developmental
framework
Virginie Ducey-Kaufmann, Christian Abry and Coriandre Vilain
Chapter Six .. 100
Emergence of a vowel gesture control Attunement of the anticipatory rounding temporal pattern in French children
Aude Noiray, Marie-Agnès Cathiard, Christian Abry, Lucie Ménard and Christophe Savariaux

Chapter Seven .. 117
The Development of Early Infant Vowel Productions as an Active Adaptation to the Native Language
Una M. Röhr-Sendlmeier and Claudia Dahnken

Chapter Eight ... 133
The role of UG in the initial state of the phonological grammar
Paula M. Reimers

Chapter Nine .. 156
Phonological proficiency and accuracy of young hearing-impaired children with a cochlear implant
Karen Schauwers, Helena Taelman, Steven Gillis and Paul Govaerts

Part III: Grammatical development

Chapter Ten ... 172
Noun grammaticization in French: prosodic and lexical factors on determiner use in children’s speech
Dominique Bassano, Isabelle Maillochon and Sylvain Mottet

Chapter Eleven .. 193
Lexical growth, grammatical competence and discourse reference: potential risks for children with a hearing deficiency
Jacqueline van Kampen

Part IV: Child directed speech

Chapter Twelve ... 208
From Babbling to First Words: Acoustic Analyses of German Infants
Britta Lintfert
Chapter Thirteen .. 221
The role of parental input in early verb acquisition: evidence from child
German
Anja Kieburg and Petra Schulz

Chapter Fourteen ... 244
Teaching a new word: Properties of CDS to 12-month-old German
learning children
Anja Müller, Barbara Höhle and Jürgen Weissenborn

List of Authors... 265

Notes.. 268
LIST OF TABLES AND ILLUSTRATIONS

Table 1-1. The different applications of Haeckel’s Biogenetic Law 16

Fig. 3-1. An intentional communicative gesture performed by a baboon. A young male intimidates a human observer by quickly slapping his right-hand on the ground. Time is indicated in milliseconds (ms). 49

Fig. 3-2. Comparisons of handedness scores for communicative and noncommunicative actions in baboons and chimpanzees. Mean Handedness Index scores ($MHI \pm SE$). An Individual Handedness Index (HI) was calculated for each subject and varied on a continuum from -1.0 to 1.0. The sign indicates the direction of population-level hand preferences: positive, right-hand preference; negative left-hand preference. The absolute values reflected the strength of hand preference. The MHI shows the degrees of population-level right-handedness revealed for the coordinated bimanual tube task and for manual gestures in chimpanzees (Hopkins et al., 2005) and in baboons (Vauclair et al., 2005; Meguerditchian & Vauclair, 2006). The error bar represents the standard error around the MHI score. All the MHI scores differed significantly from zero, $p<0.05$. $N = 104$ baboons for the tube task; $N = 60$ baboons for communicative hand slapping gestures. $N = 166$ chimps for the tube task and for food-begging gestures. .. 50

Fig. 4-1. Evolution of the nasal consonants vs. oral consonants proportions between 6 and 16 months for subject C... 66

Fig. 4-2. Evolution of the nasal consonants vs. oral consonants proportions between 6 and 16 months for subject C. without the first words “non” and “maman”.. 66

Fig. 4-3. Evolution of positive VOT values between 6 and 16 months for subject C.. 69

Fig. 4-4. Evolution of negative VOT values between 6 and 16 months for subject C.. 70
Emergence of Linguistic Abilities

Fig. 4-5. Evolution of the mean CV durations from 6 to 16 months for subject C.. 71

Fig. 4-6. Evolution of CVCV proportions vs. all other productions between 6 and 16 months for subject C.. 73

Fig. 4-7. Evolution of the mean duration of S1 and S2 for subject C. between 6 to 16 months (N.B.: month grouping is slightly different from the figure given in Abry et al., to appear)... 74

Fig. 5-1. A Framework for two Frames. At about one year, the Speech Frame will be embedded into the Sign Frame: one-two Syllables in a Foot template for the first Words. For Speech Frame, after Canonical Babbling “Syllable” emergence, two more stages: Closance control for “Consonant”, and Coarticulation (Coproduction) for “Vowel” postural control within the “Consonant”. For Sign Frame, three maturing brain streams: occipito-parietal event detection (When), and dorsal (Where) and ventral (What) paths. Their outcomes are Objecthood and Agentivity (Who), while the ventro-parietal How system affords Shape Affordance, before the object Color What system. Among the corresponding “answers” (Then/There/That) to these Wh- systems, the most relevant for our deictic topic is the fronto-parietal That-Path (evidenced by Løvenbruck et al., 2005). The Sharing Attention-Intention Mechanism (SAM-SIM) develops later than Eye Direction Detection (EDD). Given 3Hz Babbling cycles, the prediction of this framework is a 2:1 Babbling/Pointing ratio.......................... 81

Fig. 5-2. Cumulative frequency distributions (rank vs. duration). Raw data for 4153 syllables (broken curve) and 276 points (black hairy dots, with a gaussian curve fitting) produced by 6 French children in between 6 and 18 months. As a simple indication for comparison with adults: thin circles are 38 mean values of movement time for pointing data (Dutch deixis) from Levelt et al. (1985); and thick circles are 18 mean values of syllable duration (English continuous passage analysis) from Campbell (1992).... 85

Fig. 5-3. Normalized distributions of pointing strokes for Celia, Anatole and Jules. Their data are rather close to the overall distribution curve fitted to the 6 children's data (see Fig. 5-2)... 86

Fig. 5-4. Normalized distributions of pointing strokes for Lise, Nicolas and Tom. Their data are rather faster (Tom) or slower (Lise and Nicolas) than the overall trend obtained for the 6 children... 86
Fig. 5-5. Evolution of pointing stroke duration (diamonds) for all 6 French children in between 6 and 18 months (data are plotted with a decimal x-scale, <month,days>, in order to get a visual grouping by months). Apart the first isolated points (no one at 6 mos and two 7-8 mos), pointing starts at 9 mos, and goes on decreasing in overall mean durations –after a period of about 800ms between 10-14 mos– toward 600ms at 15 mos. 87

Table 5-1. Pointing and Babbling Syllable mean durations obtained for 6 French children in between 6 and 18 months, with their Pointing/Syllable ratio. The number of spontaneous pointing events (from 12 to 100) and the number of babbling cycles (from 210 to 1539) available in their vicinity was of course a matter of chance. For all the events presently measured, the overall Pointing/Babbling ratio is close to the predicted 2:1 value (see Fig. 5-1 and text). 89

Fig. 5-6. Normalized distributions of syllables cycles for Anatole, Nicolas and Tom. Their data are rather close to the overall distribution obtained for the 6 children. 90

Fig. 5-7. Normalized distributions of syllable cycles for Celia, Lise and Jules. They diverge for their highest values from the overall distribution obtained for the 6 children. 90

Fig. 5-8. The two raw cumulative distributions (seen in Fig. 5-2) of 6 French children in between 6 and 18 months, for their 276 pointing strokes (star distribution) and their 4153 syllables (leftmost distribution). Two theoretically predicted curves obtained by doubling (small dots) and tripling (broken line) from the leftmost observed syllable distribution suggest that, as a whole, pointing stroke duration can be best predicted from the observed babbling cycle, as the frame for a two-syllable template. 92

Fig. 5-9. Histogram representing syllable number per repetitive utterance (i.e. two and more syllables) for 6 French children in between 6 and 18 months. There is a 3.5 ratio in favour of two-syllables over three. 93

Fig. 5-10. A two-syllable peak in the distribution of the lexical units (in %) per syllable number for 16 worldwide typologically representative lexicons, sampled from the ULSID database (Rousset, 2004). 93
Fig 6-1. Acoustic signal (above, in seconds) and lip area time course (below, in cm²) for a sequence [isy] in a carrier phrase “Le veau Issu est blanc” uttered by a child. Identification of events: 1= maximal area for vowel [i] ; 2=10% of area difference between [i] and [y] ; 3=90% of area range between [i] and [y] ; 4= minimal area for [y] ; 5=10% of lip area difference between [i] and [y] following minimal area of vowel [y]. Interval 2-3 corresponds to Time Falling (TF) and interval 3-5 to the duration of Hold phase (H). The obstruction interval (OI) is determined on the spectrogram by the acoustic offset of [i] and the acoustic onset of [y].

Fig 6-2. Rounding movement behaviour for the four French speaking children who have been tested twice with a year interval. Relation between total duration of lip rounding movement (TF+H) and duration of OI (obstruction interval between the two vowels) in seconds. Correlation coefficients are significant at p<0.01, except for KV in the 1st session.

Fig 6-3. Rounding movement behaviour for the three French speaking children who have been tested in only one session. Relation between total duration of lip rounding movement (TF+H) and duration of OI (obstruction interval between the two vowels) in seconds. Correlation coefficients are significant at p<0.001.

Fig 6-4. Rounding movement behaviour for the two adult female taken as reference. Relation between total duration of lip rounding movement (TF+H) and duration of OI (obstruction interval between the two vowels) in seconds. Correlation coefficients are significant at p<0.001.

Fig. 7-1. Anatomical differences between infant and adult vocal tract (Morris & Klein, 2001: 9).

Fig. 7-2. Phonetic realisation of monophthongs in the German vowel system (Kohler, 1995: 174).

Table 7-1. Paired comparisons with repeated measurement for F1 and F2 of vowel [a] for five infants (Dahlia, Fabian, Jennifer, Markus, Tim) during the sixth, the ninth and the twelfth month.

Table 7-2. Paired comparisons with repeated measurement for F1 and F2 of vowel [ε] for six infants (Dahlia, Fabian, Jakob, Julian, Markus, Tim) during the sixth, the ninth and the twelfth month.
Table 7-3. Paired comparisons with repeated measurement for F_1 and F_2 of vowel ε for five infants (Dahlia, Jakob, Julian, Markus, Tim) during the sixth, the ninth and the twelfth month. .. 127

Fig. 7-3. Exact position of vocalizations of $[a]$ in the F_1-F_2-plane during the fourth, twelfth and eighteenth month in comparison to adult data. 129

Table 8-1. Narrow transcription DATA (Vihman’s unpublished data, Stanford Child Phonology Project).. 145

Table 9-1. Overview of the auditory characteristics of the CI children... 160

Fig. 9-1. Median PMLU values (+ interquartile ranges) in the NH and CI groups from ages 2;1 to 2;6. .. 163

Fig. 9-2. Median PMLU values (+ interquartile ranges) in the NH and CI groups from MLU Stages 1 to 4. ... 164

Fig. 9-3. Median PMLU values (+ interquartile ranges) of the target words attempted by the NH and CI children respectively from ages 2;1 to 2;6. 165

Fig. 9-4. Median PMLU values (+ interquartile ranges) of the target words attempted by the NH and CI children respectively from MLU Stages 1 to 4 ... 165

Fig. 9-5. Median PWP values (+ interquartile ranges) in the NH and the CI groups from ages 2;1 to 2;6. ... 166

Fig. 9-6. Median PWP values (+ interquartile ranges) in the NH and the CI groups from MLU Stages 1 to 4. ... 166

Fig. 10-1. Frequencies of the grammatical patterns in noun use at 1;8 and 2;6.. 178

Fig. 10-2. Noun length patterns at 1;8 and 2;6 .. 179

Fig. 10-3. Noun use patterns as a function of noun length at 1;8 180

Fig. 10-4. Noun use patterns as a function of noun length at 2;6 180

Fig. 10-5. Noun lexical sub-classes at 1;8 and 2;6 181
Fig. 10-6. Noun use patterns as a function of noun lexical classes at 1;8 .. 182

Fig. 10-7. Noun use patterns as a function of noun lexical classes at 2;6 182

Fig. 11-1. The acquisition of <+fin>-marking and <+det>-marking: Dutch Sarah.. 195

Table 11-1. Types of finite verbs: Dutch Sarah (S) and her mother (M). 196

Fig. 11-2. The acquisition of <+det>-marking and 3rd person pronouns: Dutch Sarah ... 197

Fig. 11-3. The acquisition of <+fin>- and <+det>-marking: Dutch child with otitis media .. 201

Table 11-2. Types of finite verbs: Dutch child with otitis media and her mother (M) .. 201

Fig. 12-1. Position of measurement points by profile-analyses............. 210

Fig. 12-2. Exemplars of stressed vowels: at 5 (up-left), 7 (up-right), and 18 (bottom) months of age.. 212

Fig. 12-3. Clusters of stressed vowels: at 5 (up-left), 7 (up-right), and 18 (bottom) months of age.. 214

Table 12-1. F and p for middle (MV) and low (TV) vowels, depending on stress at 5 months.. 215

Fig. 12-4. Exemplars (left) and classes (right) of vowel productions (mother).. 216

Fig. 12-5. Vowel duration for unstressed and stressed vowels produced by the parents.. 217

Fig. 13-1. Token frequency of verb expressions in German-speaking oneyear-olds’ spontaneous speech, n=196 verb expressions (Schulz, 2005) 225

Table 13-1. Spontaneous speech samples studied 229
Fig. 13-2. Total token frequencies in parental utterances, n=7465 utterances (12 samples) ... 232

Fig. 13-3. Relative token frequency in parental input to typically developing children per transcript, n=8 samples 233

Table 13-2. Relative token frequency, relative type frequency, and TTR in parental input to typically developing children by means (standard deviation), n=8 samples ... 234

Fig. 13-4. Total token frequency of the 10 most frequent verb particle and particle verb types in parental input to typically developing children, n=5001 utterances (8 samples) ... 235

Fig. 14-1. Position of target nouns and verbs within an intonational phrase .. 251

Fig. 14-2. Syntactic environment for target nouns and verbs 252

Fig. 14-3. Open class elements preceding the target nouns 253

Fig. 14-4. Closed class elements preceding the target nouns 254

Fig. 14-5. Open class elements preceding the target verbs 255

Fig. 14-6. Closed class elements preceding the target verbs 255
ACKNOWLEDGEMENTS

We wish to thank Florence Chenu for the great job with the layout of the manuscript.
1. Introduction

Few would argue with the assertion of contemporary science that language is the most complex capacity evidenced by humans. In particular, the structure of language—phonology and syntax—has been considered as an epicenter of formulations regarding necessary and sufficient conditions for defining language in its modern complex form. Some recent perspectives have included lexical/semantic aspects of acquisition as necessary to understanding the nature of language capacities as well. One robust area of continuing scholarly inquiry on understanding this complex capacity has been consideration of how it is acquired by young humans. An auxiliary paradigm has centered in comparative study related to how non-humans who display some aspects of both linguistic competence and performance may help to illuminate and define the boundary values for human language capacities. These research topics have also been brought to bear on considerations of the deeper origins of the human language capacity; the question of language evolution.

The works in Emergence of Linguistic Abilities illustrate a number of contemporary paradigms for exploring language acquisition, comparative studies of primate communication modes, as well as extensions to consideration of language origins. As such, they offer varied potential avenues to deepening understanding of the complex phenomena of language capacities in a triangulation of scientific paradigms and perspectives across scholarly disciplines. Consensus based synthesis will relative to deep and contemporary roots of human language await legitimate integration of the philosophical foundations from which these diverse perspectives emerge. Agreement is positive in scientific inquiry into complex phenomena. However, differences in insight offered from these diverse paradigms and research cultures may be as important to more profound levels of scholarly insight as is the goal of achieving consensus. Distinct and differing views offer, as well, potential for more sophisticated
inclusive theories in their diverse tools and research cultures. The story of the blind man and the elephant comes to mind as these authors consider the implications of their disparate approaches to considering emergence of language capacities both contemporary and historical.

2. The Broader Context of Considerations on Language Capacities

The “nature” versus “nurture” debate forms a fundamental topic in the debate on the origins of complex knowledge and behavior relative to language capacities. Early work by the philosophers Descartes (1637) and Kant (1924) illuminated this dichotomy in philosophical orientation. The diversity represented in their views provides one axis of philosophical difference in epistemological study of the origins of knowledge and observable behavior in acquisition of complex systems. “Nature perspectives emphasize the inborn capacities of humans as being present at birth. In contrast, a “nurture” orientation implicates the importance of environmental input to instantiation of complex capacities, including language acquisition. This distinction is cogent to the topics covered in these chapters as well. With reference to language acquisition, two distinct perspectives emphasize “nature” and “nurture” respectively.

A recent article by Chomsky and colleagues (Chomsky, Hauser & Fitch, 2002) is illustrative of a strong “nature” or structuralist perspective on language faculties. In this account, the authors have proposed a narrow language faculty (FLN) and a broad sense faculty (FLB) to describe language knowledge. FLN indicates an abstract linguistic computational system unique to humans and available in advance of acquisition in human infants. It is based on abstract mentally stored linguistic structures. The broader faculty of language (FLB) includes both the abstract computational system and sensory-motor (i.e. phonetic) and conceptual (i.e. semantic and pragmatic) systems with which that system interacts. FLB does not define human language competence uniquely relative to non-human communicators but is an aspect of the broader scope of language capacities, according to this formulation.

In a contrasting emphasis on “nurture”, researchers operating from biological (Boë, 2007; Lindblöm, 2008) and social (Tomasello, 2003; Oller, 2000) functionalist perspectives on language and its conceptual foundations have proposed gradual accretion of linguistic capacities. In this view, language capacities are viewed as being emergent within functional interactions in the individual speaker’s communication
environment. These functionally oriented conceptualizations have proposed that the biology of human speakers and the functions of language in social context ultimately constrain the structure of human language capacities. This broader definition of language capacities in children and adult speakers implies that study of peripheral aspects of perception and production, and the social pressures on use of language are needed aspects of scientific inquiry necessary to full understanding of language capacities. Language function, as well as forms emergent from phylogenetic and ontogenetic processes, is viewed as interactive. In this sense, “interactive” relates to the general interactions of internal biological and external social forces in supporting creation of adaptive language behaviors. Functionalist conceptualizations are in strong contrast to the FLN perspective of Chomsky and colleagues, where abstract mental competence forms the essential boundary of language in humans and function is not required for language to emerge.

Common to both structuralist linguistic “nature” and functionalist emergence or “nurture” perspectives is an emphasis on language form as one critical defining feature of contemporary human language facilities. Differences in the two perspectives lay in the conceptualization of the boundaries required to define language. In the case of acquisition of language capacities in young speakers, are these capacities based on maturation of a priori structures merely “triggered” by experience during acquisition (“nature”)? Alternatively, are they emergent properties, based on multiple function-driven social interactions founded in biological mechanisms that constrain the boundaries of human language as implemented by production and perception mechanisms (“nurture”)? Which aspects of language are unique to humans relative to comparative studies of non-human primates? These large scale questions infuse studies of language acquisition in the implicit assumptions that researchers make about whether language is properly defined by abstract competence or must include considerations of the functioning of peripheral mechanisms and social capacities.

3. Divergent Research Perspectives on Language Capacities

At present, structuralist and functionalist accounts are not convergent in their differing perspectives on defining characteristics required for understanding language or on the nature of acquisition of language capacities. However, as Lindblöm (2008: 329) has recently noted;
There are no absolute explanations in science, only broader and deeper accounts. Every academic discipline chooses its own starting points and proceeds from there to investigate its chosen fragment of the universe. In this sense, any scientific explanation rests on a (set of) preliminary, and vulnerable, claim(s). Progress takes place when scientists succeed in broadening and deepening their understanding of reality.

The diverse topics addressed by volume authors in *Emergence of Linguistic Abilities* illustrate Lindblom’s broad conceptualization of the nature of scientific inquiry. As such, they offer some optimism for deepening understanding of the complex phenomena of language capacities via triangulation of scientific paradigms and perspectives across scholarly disciplines. Differences in insight offered from these diverse paradigms and research cultures may be as important to deeper understanding of human language in the broadest sense as the goal of achieving consensus. The story of the blind man and the elephant comes to mind as these authors consider the implications of their disparate approaches to considering language capacities.

In Chapter 1, Gontier critiques Haeschel’s classic “ontogeny recapitulates phylogeny” assertion. In her narrative, she reflects the “nature” perspective on language competence as she does not consider function as a factor underlying language acquisition. Applications of paradigms focused on prelinguistic development of vocal and gestural output capacities in understanding the nature of young human’s language acquisition are taken into account by Guidetti in Chapter 2 and in Chapter 5 authored by Ducey-Kaufmann and colleagues. Complimentary with consideration of earliest stages of prelinguistic output in human infants, understanding of language boundaries in comparative primate study of gesture use is the central focus of Vauclair and Meguerditchian in Chapter 3. Each of these three chapters is relatively more oriented toward a “nurture” or functionalist perspective. The authors consider the implications of their scientific questions and paradigms for questions of language evolution as well. Implicit to considerations of evolution from a Neo-Darwinian perspective is incorporation of function of language and/or communication systems for the organism.

Three chapters triangulate on consideration of structuralist “nature” and functionalist “nurture” accounts of language acquisition in young children. A structural analysis paradigm is pursued in Chapters 8 and 10. Reimers reviews evidence to support the assertion that CVC syllables are the initial state of the phonological grammar in Chapter 8. Prosodic and lexical analyses of fillers and determiners are described by Bassano and colleagues in Chapter 10 as an aspect of noun grammaticalization. In
contrast, functionalist paradigms based on emergence of speech motor control are found in Chapter 4. Lavallée and Vilain consider visual and auditory capacities as they intertwine with emergence of speech motor control. Insights offered from study of young children with communication disorders are found in Chapters 9 and 11. Study of communication disorders offers the opportunity to view the emergence of language in the young child when one of the building blocks of the process is not present. Building blocks include auditory and/or visual perceptual, motor, cognitive, and social capacities available to children who are constructing language knowledge and language performance (Davis & Bedore, 2008). In this genre, Schauwers and colleagues review the emergence of vocal output complexity in children with profound hearing impairment who have received cochlear implant instrumentation very early in the process of language acquisition in Chapter 9. This paradigm enables consideration of the functional consequences on language output of impoverishment of auditory perceptual input in earliest periods of language development. In a complementary study of acquisition of higher level language form, van Kampen centers on emergence of a broad spectrum of lexical, grammatical, and discourse variables in the context of early auditory deprivation in one hearing impaired child in Chapter 11.

Chapters 6, 12, 13 & 14 consider the role of input via psychological paradigms in emergence of varied aspects of prelinguistic vocalizations and emergence of early language structure. Noiray and colleagues emphasize the role of input in the linguistically relevant pattern of vocalic rounding in French children. Their chapter forms a compliment to considerations addressed by Röhr-Sendlmeyer and Dahmken on early ambient language vocal tract adjustments in German infants in Chapter 7. These authors analyze the nature of vocal tract modification in infants relative to language input factors in the period between 4 and 8 months in human infants.

Chapters 12 and 13 consider the role of input in a German language environment related to a variety of dimensions of children’s linguistic output patterning. Lintfert analyzes emergence of ambient language stress patterns relative to ambient language input in Chapter 12. Kieburg and Schulz, in a grammatically oriented account, center on German verb particles and the relative role of input in their emergence. Müller and Höhle expand beyond considerations of language form to include lexical development as a crucial aspect of early acquisition of linguistic capacities. Like the other chapters in this section, Müller and Höhle’s chapter is founded on input as a crucial and relevant processing factor in instantiation of essential aspects of language knowledge. In this case,
lexical knowledge lies outside of the FLN envisioned by Chomsky and colleagues (2002) as constituting the core property of human language.

4. Historical Origins of Human Language Capacities

The diverse chapters focusing on language acquisition are contextualized, in several instances throughout Emergence of Linguistic Abilities, within the larger question of how and whether understanding of language acquisition may potentially illuminate understanding of the deeper origins of language capacities in early speakers; the question of language evolution.

Emergence of evolution as a scientific question has a relatively long history. The ban on scientific consideration of language origins by the Société de Linguistique of Paris in the mid nineteenth century, followed shortly afterward by the London Philological Society put a dark and continuing cloud over intellectual discourse on this topic for more that 100 years. Beginning in the 1970's there were a few attempts to revive the issue. Since the early 1990's, evolution, in particular language evolution, has again begun to be recognized as worthy of scientific consideration. Without a fossil record for consideration of language origins, researchers from diverse scientific disciplines have investigated capacities of the peripheral production and perceptual systems, social and cognitive driving forces via anthropological study, neural structure and function and genetic underpinnings, to name a few topics addressed. A recent grant initiative of the European Science foundation (2002-2006) The Origin of Man, Language, and Languages (OMLL) sought grant submissions in “Language and Archaeology”, “Language and the Brain”, “Language and Genetics”, “Language Acquisition and Language Universals”, “Language and Animal Communication”, and “Language Evolution and Computer Modeling”. The application of scientific paradigms in these diverse disciplines within the European scientific community is illustrative of the proliferation of scholarly inquiry, paradigms, and cross disciplinary fertilization presently characteristic of study of the evolution of language. “Language Acquisition and Language Universals” and “Language and Animal Communication” are illustrated in this volume on Emergence of Linguistic Abilities.

Cogent to consideration of language evolution as a crucial aspect of fully understanding the emergence of linguistic abilities is a set of questions posed in 1952. In this period before study of language evolution gained momentum as a viable dimension of understanding language, Nobel laureate Nikko Tinbergen voiced these four far-reaching questions.
His goal was to enable comprehensive consideration of the nature and origins of communication systems in living organisms. His questions form a wide-ranging template to guide research across disciplines into the historical origins of contemporary language function. Few single disciplines presently have access to a diversity of powerful paradigms to address all four questions in any comprehensive way. The implication of need for diverse paradigms is borne out by the multidisciplinary nature of inquiry into evolutionary origins of language characteristic of the recent ESF grant initiative on the Origin of Man, Language, and Languages. Tinbergen’s four questions encompass “mechanistic”, “functional”, “ontogenetic”, and “phylogenetic” aspects of communication systems:

1. “How does it work?” What mechanisms (neural, physiological, psychological, etc.) underlie expression of language capacities?
2. “What does it do for the organism?” How do language capacities affect the organism’s functional capabilities—survival and reproduction?
3. “How does it get that way in development?” What ontogenetic (biological, social and cognitive) factors guide acquisition of language capacities?
4. “How did it get that way in evolution?” How does the phylogenetic (evolutionary) history of the species help understand contemporary language capacities in light of ancestral features?

These four questions imply a broad definition of language capacities inclusive of both FLN (abstract knowledge system enabling recursivity) and FLB (sensori-motor and conceptual-intentional system) as proposed by Chomsky and colleagues (2002). Importantly, Tinbergen’s questions also implicate consideration of the function of language as a necessary aspect of emergence of communication systems in ontogeny and in phylogeny in stark contrast to structuralist formulations. An auxiliary, but quite important, implication of these questions is inclusion of paradigms considering non-human communication systems. Comparative paradigms provide an avenue to understand the boundaries of human language in the context of the structure and function of diverse communication systems across the animal kingdom. This crucial question addressed by Hauser (1996) in his seminal volume Evolution of Communication.

The works from diverse disciplines that comprise the Emergence of Linguistic Abilities largely focus on three of Tinbergen’s four seminal questions. Tinbergen’s questions 1 (underlying mechanisms) and question 3 (acquisition or ontogeny) form the core consideration of the bulk of the chapters. Question 4 (evolution or phylogeny) is addressed directly within
Chapters 1-3 in the ontogeny/phylogeny sub-section. The diversity of paradigms and perspectives represented provide needed level of detail for consideration of the question of emergence of language in all its potential dimensions.

5. Summary

The challenge for contemporary study of the nature and boundary values for human language capacities is to continue multidisciplinary interactions in spite of the lack of coherence of present theoretical proposals and paradigms. With continued exposure, this diversity can begin to achieve a true scholarly level of cross-fertilization with the sophistication and comprehensiveness necessary to move toward coherent theoretical proposals for contemporary and historical understanding of human language capacities. Emergence of Linguistic Abilities contributes to that ongoing scientific dialogue as envisioned by Lindblöm.

References

PART I

ONTogeny / PHYlogenY
CHAPTER ONE

ON THE DIFFERENT APPLICATIONS
OF HAECKEL’S BIOGENETIC LAW
IN LANGUAGE ORIGIN
AND EVOLUTION STUDIES

NATHALIE GONTIER

1. Introduction

Several scholars that work within the field of evolutionary linguistics (e.g. Bickerton, 1990:115; McNeillage & Davis, 2000; Givón, 2002), argue that the ontology of language recapitulates the phylogenetic emergence of language. The idea that ontogeny recapitulates phylogeny is also known as Haeckel's biogenetic law. In this paper, several implementations of this law are critically reviewed. First, it is examined what Haeckel himself intended to capture with his biogenetic law that states that ontogeny recapitulates phylogeny. Secondly, it is investigated how Haeckel’s biogenetic law is applied within language origin and evolution studies. Three such implementations are discussed: the interspecific, intraspecific and linguistic one. Interspecifically, Haeckel’s law is applied to draw conclusions on the evolution of language based on evidence of current primate behaviour. Intraspecifically, it is sometimes argued that child language recapitulates adult human language. And linguistically, Pidgin and Creole languages (not the speakers of these languages) are regarded as simpler forms of language that resemble a proto-language.

2. Haeckel’s biogenetic law

Haeckel’s fundamental law of biogeny (the “science of the genesis of life in the widest sense”) states that ontogeny (the development of the
individual) recapitulates phylogeny (the evolution of species) (Haeckel, 1912: 1). More specifically:

“The series of forms through which the individual organism passes during its development from the ovum to the complete bodily structure is a brief, condensed repetition of the long series of forms which the animal ancestors of the said organism, or the ancestral forms of the species, have passed through from the earliest period of organic life down to the present day. The causal character of the relation which connects embryology with stem-history is due to the action of heredity and adaptation. […] Phylogenesis is the mechanical cause of ontogenesis”. (Haeckel, 1912: 2-3).

What does this mean? Haeckel (1912: 32-35) was a fearsome proponent of Darwin’s theory of evolution by means of natural selection. He regarded natural selection to be the sole answer to the then prevailing dualistic or teleological views wherein internal life forces (e.g. élan vital) were introduced to explain the origin of behaviour. According to Haeckel (1912: 35), Darwin gave a monistic, mechanical account on how species, including humans, evolved. Haeckel called this monistic approach to human evolution "monistic anthropogeny". According to Haeckel, the theory of natural selection was an inductive law. Contrary to the deductive method, the inductive method is characterized by the endorsement that empirical observations must precede theoretical generalizations. Because Darwin came to his conclusions on natural selection by inductive reasoning (for instance he observed artificial selection of plant and animal breeders and from thereon generalized about natural selection).

If one follows an inductive method, the primary task of every adherent of evolution is to develop disciplines that provide the necessary empirical data from whereon we can then develop and generalize our theories. According to Haeckel, inferences, or “synthetic truths” as he called them, could be drawn from:

“… comparative anatomy, embryology, palaeontology, dysteleology [the study of useless or harmful traits], chorology [the science of distribution, migration], and classification [taxonomy].”

Thus, embryology and more specifically, ontogeny (which used to be synonymous to embryology, while it now refers to the development of an organism from conception until death) provide a “window” on phylogeny.

Haeckel reasons as follows: in an evolutionary view, everything that exists today is somehow the result of evolution. Therefore, ontogeny too
must be the result of phylogeny, because of the processes of heredity and adaptation. Therefore, one can say that phylogeny - quite literally - causes ontogeny. Embryology thus becomes a method, a tool to literally observe the evolution of the species. In the best case scenario then, one would only need to study the development of the embryo to literally see the evolution of the species. However, especially for man, no such scenario is possible because of cenogenetic processes.

In Haeckel’s (1912, 4) theory, cenogenetic processes or embryonic variations are distinguished from palingenetic processes or embryonic recapitulations. Cenogenetic processes explain the origin of traits of the embryo that have newly evolved and thus are not present in earlier evolved species. Palingenetic processes, on the contrary, explain the emergence of traits in the embryo that are shared with ancestral species. Haeckel (1912: 5):

“The evolution of the foetus (or ontogenesis) is a condensed and abbreviated recapitulation of the evolution of the stem (or phylogenesis); and this recapitulation is the more complete in proportion as the original development (or palingenesis) is preserved by a constant heredity; on the other hand, it becomes less complete in proportion as a varying adaptation to new conditions increases the disturbing factors in the development (or cenogenesis).”

In Haeckel's account, heredity enables the faithful transmission of existing traits. Adaptation towards an external (embryonic) environment, on the other hand, causes the embryos to vary and evolve new traits (basically form their ontogenetic unfolding pattern). While palingenesis could possibly provide us with a portrait gallery of all our common ancestors, cenogenetic processes blur the picture because certain forms or traits are deleted during the course of history while other forms are inserted (see also Gontier, in press b, Richardson & Kneuck, 2002).

Although forms can be deleted and inserted during the course of evolution, Haeckel (1912: 3) understands evolution to be predominantly a gradual and linear process. New traits are mostly added onto an existing developmental process by terminal addition. There where "direct embryological observation" can not fill in the gap that results from ontogenesis, "comparative anatomy" mostly can.

Although Haeckel’s theory has been overthrown, his goal was noble and the means he gave to study evolution are at the very least intriguing. It would make things much less complicated if we were somehow able to study the evolution of species by studying currently developing embryos. It would indeed be the closest we could come to direct observational