Statistical Techniques for Modelling Extreme Value Data and Related Applications
Statistical Techniques for Modelling Extreme Value Data and Related Applications

By
Haroon M. Barakat, El-Sayed M. Nigm
and Osama M. Khaled

Cambridge Scholars Publishing
Contents

Preface x
Notations and abbreviations xii
List of illustrations xv
List of tables xvii

1 Introduction: Some basic and miscellaneous results 1
1.1 The convergence concept in probability theory 1
 1.1.1 Modes of convergence of RVs 2
 1.1.2 Further limit theorems on weak convergence 4
1.2 Statistical methods 6
 1.2.1 Maximum likelihood method 6
 1.2.2 Kolmogorov-Smirnov (K-S) test 9
 1.2.3 Genetic algorithms (GA) 11
1.3 Bootstrap technique 13

2 Asymptotic theory of order statistics: A historical retrospective 18
2.1 Order statistics 18
2.2 Extreme value theory under linear normalization 20
2.3 Max-domains of attraction of univariate ℓ-max-stable laws 26
2.4 Limit theory of intermediate order statistics under linear normalization 30
 2.4.1 Asymptotic theory of intermediate order statistics 30
 2.4.2 Domains of attraction of intermediate limit laws 32
2.5 Central order statistics—domains of attraction of central limit laws 33
 2.5.1 Asymptotic theory of central order statistics 33
 2.5.2 Domains of attraction of central limit laws 36
Contents

2.6 Asymptotic theory of extremes under nonlinear normalization

2.6.1 Characterization of the class of ML-laws and the GMA group

2.6.2 The class of ML-laws

2.6.3 The class of max-stable laws (MS-laws)

2.7 Comments on Pancheva’s work

2.8 Extreme value theory under power normalization

2.9 Max-domains of attraction of univariate p-max-stable laws

2.10 Comparison between domains of attraction

2.11 Asymptotic central order statistics under nonlinear normalization

2.11.1 The class of weak limits of central order statistics under general normalization

2.11.2 Asymptotic central order statistics under power normalization

2.11.3 Examples

2.11.4 Comparisons between the domains of attraction of weak limits of central order statistics under linear and power normalizing constants

2.12 Asymptotic intermediate order statistics under nonlinear normalization

2.12.1 The class of weak limits of intermediate order statistics under general normalization

2.12.2 The domains of attraction of the lower intermediate power types

2.13 Asymptotic theory of order statistics under exponential normalization

2.14 Generalized order statistics and dual generalized order statistics

2.14.1 Distribution theory of the m-gos and m-dgos

2.14.2 Asymptotic theory of univariate $m-$gos and $m-$dgos

2.14.3 Further limit theorems of gos and dgos

2.15 Restricted convergence

2.16 Review of extreme value analysis in environmental studies
Contents

3 Bootstrap order statistics and calibration of the sub-sample bootstrap method 83
 3.1 Bootstrapping extremes under linear normalization 84
 3.1.1 Convergence bootstrap distributions when the normalizing constants are known 84
 3.1.2 Convergence bootstrap distributions when a_n and b_n are unknown 85
 3.2 Bootstrapping extremes under power normalization 86
 3.2.1 Convergence bootstrap distributions when the normalizing constants are known 87
 3.2.2 Convergence bootstrap distributions when the normalizing constants are unknown 88
 3.3 Verification of the sub-sample bootstrap method 89
 3.4 Bootstrapping of order statistics with variable rank in the L-model 92
 3.4.1 Bootstrapping of central order statistics under linear normalization 92
 3.4.2 Bootstrapping of intermediate order statistics under linear normalization 98
 3.5 Bootstrapping of order statistics with variable rank in the P-model 100
 3.5.1 Bootstrapping central order statistics under power normalization 100
 3.5.2 Bootstrapping intermediate order statistics under power normalization 102
 3.6 Simulation study 104
 3.7 Bootstrapping extreme generalized order statistics 106

4 Statistical modelling of extreme value data under linear normalization 112
 4.1 The National Environmental Radiation Monitoring Network (NERMN) in Egypt 112
 4.2 Environmental monitoring 113
 4.3 Chemical pollutants 114
 4.3.1 Particulate matter 114
 4.3.2 Sulphur dioxide 115
 4.3.3 Ozone 116
 4.3.4 Ambient gamma radiation 117
 4.4 Collected data 118
 4.5 Data treatments and simulation study 124
Contents

4.5.1 Mathematical models 124
4.6 Data treatments 127

5 Extreme value modelling under power normalization 139
 5.1 Generalized extreme value distribution under power normalization 139
 5.2 Statistical inference using the BM method 141
 5.3 The GPDP DFs and their related statistical inference 142
 5.3.1 The derivation of GPDP—The POT stability property 142
 5.3.2 Estimation of the shape and the scale parameters within the GPDP model 143
 5.4 Simulation study 145
 5.5 Parameter estimation for GEVL and GEVP by using the GA technique 152

6 Methods of threshold selection 154
 6.1 Some estimators for the EVI under linear normalization 154
 6.2 Some methods of threshold selection 159
 6.2.1 Graphical methods 161
 6.3 Comparison between $\gamma_{\ell M}^+$ and $\gamma_{\ell MR}^{++}$ via a simulation study 165

7 Estimations under power normalization for the EVI 167
 7.1 Counterparts of Hills estimators under power normalization 167
 7.1.1 Counterparts of HEPs 168
 7.2 Hill plot under power normalization (HPP) 170
 7.3 Simulation study 171
 7.4 Harmonic t-Hill estimator under power normalization 174
 7.5 Moment and moment-ratio estimators under power normalization 174
 7.6 Further contemporaneous Hill estimators under power normalization 178
 7.7 Four HEPs based on GPDP 178
 7.7.1 Four HEPs that do not have counterparts in the L-model 179
 7.7.2 Simulation study 180
 7.8 New Hill plot (NHP) 183
 7.9 Comparison between estimators under power normalization 184
 7.9.1 The first simulation study 184
Contents

7.9.2 The second simulation study 189
7.10 The weighting between the linear and power models 194
7.11 Summary and conclusion 200

8 **Some applications to real data examples** 202
8.1 The first application to real data-related air pollution 202
8.2 Graphical methods to select the threshold of the given application 208
 8.2.1 HPL and HPP to select a suitable threshold 208
 8.2.2 MEPL and MEPP to select a suitable threshold 211
8.3 Test for the choice of EVI in the GPDL and GPDP models 215
8.4 Comparison between graphical methods of threshold selection 217
8.5 Fitting of the GPDL and GPDP 218
8.6 Comparison between some estimators of the EVI 219
8.7 The second application to real data 224

9 **Miscellaneous results** 225
9.1 Extreme value theory under linear-power normalization 225
 9.1.1 The class of weak limits of lp–model 226
 9.1.2 Statistical inference using BM method in lp–model 227
9.2 Real data application related to AccuWeather 228
9.3 Box-Cox transformation to improve the L-model and P-model 230
9.4 Real data application 231
9.5 The Kumaraswamy GEVL and GEVP DFs and further generalizations 237

Appendix A Summary of Hill's estimators in the L-model and P-model 239

References 244
Author index 254
Subject index 258
Extreme value theory is a progressive branch of statistics dealing with extreme events. The restriction of the statistical analysis to this special field is justified by the fact that the extreme data, or the extreme part of the sample, can be of outstanding importance in studying floods, hurricanes, air pollutants, extreme claim sizes, life spans, etc.

A quick look at the literature reveals that all the known books in the area of extreme value analysis deal with the modelling of extreme value data based on extreme value theory under linear normalization. In this book, we will tackle some modern trends in the modelling of extremes under linear normalization, such as the bootstrap technique. In addition, we consider the problem of the mathematical modelling of extremes under power normalization with the hope that this most recent approach will be more routinely applied in practice. Finally, the present book handles some recent approaches in order to achieve an improved fit of generalized extreme value distribution for block maxima data and of generalized Pareto distribution for peak-over-threshold data, either under linear or power normalization. Among these approaches is the use of Box-Cox transformation, which provides additional flexibility in improving the model fit.

This book is designed as an addition to the series of books about the modelling of extreme value data rather than as a competitor to them. To the best of the author’s knowledge, no books now in print cover the modelling of extreme data under power normalization. It is worth mentioning that the advantage of using the power normalization is that the classical linear model (i.e., using extreme value theory under linear normalization) may fail to fit the given extreme data, while the power model (i.e., using extreme value theory under power normalization) succeeds. On the other hand, although the book contains several applications, it meets the needs of readers who are interested in both the theoretical and the practical aspects of extreme value theory. In addition, the prerequisites for reading the book are minimal; readers do not need knowledge of advanced calculus or advanced theory of probability.

The primary readership of this book will be researchers who have a strong mathematical background and are interested in extreme value theory and its applications in modelling extreme value data, including statisticians, and researchers who are interested in environmental and economic issues.
In fact, in some cases, the book may be a primary text (for students of departments of statistics in faculties of science and postgraduate students studying ecology) and it may be supplementary or recommended reading for all students or researchers who are interested in environmental studies and economics.

I am indebted to the numerous researchers who have enriched this field, especially in the modelling of extreme data concerning air pollution. Usually, these researchers worked on their own data arising from their particular habitats; consequently, we may find some diversities or even divergences in their results. However, beneath these diversities or even divergences there lies a shared basis of a general theory. Actually, I am pleased to be part of this team. In this book, I am trying with some members of my own research group to present our own experience that has extended over two decades in this field.

Finally, I would like thank my earlier Ph.D student Dr Hafid A. Alaswed for many considerable contributions presented in this book, especially in Chapters 6–8 of this book. I would also like to extend my sincere gratitude to Adam Rummens who encouraged me to write this book.

The principal author
H. M. Barakat
June 2018
Notations and abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>Asymptotic bias</td>
</tr>
<tr>
<td>AIC</td>
<td>Akaike information criterion</td>
</tr>
<tr>
<td>AM</td>
<td>Asymptotic mean squared error</td>
</tr>
<tr>
<td>AN</td>
<td>Asymptotic normality</td>
</tr>
<tr>
<td>AV</td>
<td>Asymptotic variance</td>
</tr>
<tr>
<td>BIC</td>
<td>Bayesian Akaike criterion</td>
</tr>
<tr>
<td>Box-Cox-GL</td>
<td>Box-Cox-GEVL</td>
</tr>
<tr>
<td>BM</td>
<td>Block maxima</td>
</tr>
<tr>
<td>C.V</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>CVC</td>
<td>Coefficient of variation criterion</td>
</tr>
<tr>
<td>CVCL</td>
<td>Coefficient of variation under linear normalization</td>
</tr>
<tr>
<td>CVCP</td>
<td>Coefficient of variation under power normalization</td>
</tr>
<tr>
<td>DF</td>
<td>Distribution function</td>
</tr>
<tr>
<td>DFs</td>
<td>Distribution functions</td>
</tr>
<tr>
<td>D_ℓ</td>
<td>Domain of attraction under linear normalization</td>
</tr>
<tr>
<td>D_p</td>
<td>Domain of attraction under power normalization</td>
</tr>
<tr>
<td>dgos</td>
<td>Dual generalized order statistics</td>
</tr>
<tr>
<td>EEAA</td>
<td>Egyptian Environmental Affairs Agency</td>
</tr>
<tr>
<td>$E(X)$</td>
<td>Expected value of X</td>
</tr>
<tr>
<td>evir</td>
<td>Extreme values in R package</td>
</tr>
<tr>
<td>EVT</td>
<td>Extreme value theory</td>
</tr>
<tr>
<td>EVI</td>
<td>Extreme value index</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic algorithms</td>
</tr>
<tr>
<td>GEVL</td>
<td>Generalized extreme value DF under linear normalization</td>
</tr>
<tr>
<td>GEVLs</td>
<td>Generalized extreme value DFs under linear normalization</td>
</tr>
<tr>
<td>gos</td>
<td>Generalized order statistics</td>
</tr>
<tr>
<td>GP</td>
<td>Generalized Pareto distribution</td>
</tr>
<tr>
<td>GPDL</td>
<td>Generalized Pareto DF under linear normalization</td>
</tr>
<tr>
<td>GEVPs</td>
<td>Generalized extreme value DFs under power normalization</td>
</tr>
<tr>
<td>GPDP</td>
<td>Generalized Pareto DF under power normalization</td>
</tr>
<tr>
<td>GPDPs</td>
<td>Generalized Pareto DFs under power normalization</td>
</tr>
<tr>
<td>GPVLP</td>
<td>Generalized Pareto DF under linear-power normalization</td>
</tr>
<tr>
<td>GPVLPs</td>
<td>Generalized Pareto DFs under linear-power normalization</td>
</tr>
<tr>
<td>K-S</td>
<td>Kolmogorov-Smirnov (test)</td>
</tr>
<tr>
<td>HP</td>
<td>Hill plot</td>
</tr>
<tr>
<td>HPL</td>
<td>Hill Plot under linear normalization</td>
</tr>
<tr>
<td>HPP</td>
<td>Hill plot under power normalization</td>
</tr>
<tr>
<td>HE</td>
<td>Hill estimator</td>
</tr>
<tr>
<td>HEs</td>
<td>Hill estimators</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>HEL</td>
<td>Hill estimator under linear normalization</td>
</tr>
<tr>
<td>HELs</td>
<td>Hill estimators under linear normalization</td>
</tr>
<tr>
<td>HEP</td>
<td>Hill estimator under power normalization</td>
</tr>
<tr>
<td>HEPs</td>
<td>Hill estimators under power normalization</td>
</tr>
<tr>
<td>HMEL</td>
<td>Harmonic moment estimator under linear normalization</td>
</tr>
<tr>
<td>HMEP</td>
<td>Harmonic moment estimator under power normalization</td>
</tr>
<tr>
<td>HMEPs</td>
<td>Harmonic moment estimators under power normalization</td>
</tr>
<tr>
<td>iid</td>
<td>Independent and identically distributed</td>
</tr>
<tr>
<td>LI</td>
<td>Location-invariant</td>
</tr>
<tr>
<td>LAQN</td>
<td>London air quality network</td>
</tr>
<tr>
<td>LRT</td>
<td>Likelihood ratio test</td>
</tr>
<tr>
<td>MEL</td>
<td>Moment estimators under linear normalization</td>
</tr>
<tr>
<td>MEP</td>
<td>Moment estimators under power normalization</td>
</tr>
<tr>
<td>MEPL</td>
<td>Mean excesses plot under linear normalization</td>
</tr>
<tr>
<td>MEPP</td>
<td>Mean excess plot under power normalization</td>
</tr>
<tr>
<td>m−gos</td>
<td>m−generalized order statistics</td>
</tr>
<tr>
<td>m−dgos</td>
<td>m−dua generalized order statistics</td>
</tr>
<tr>
<td>ML-laws</td>
<td>The class of maximum limit laws</td>
</tr>
<tr>
<td>ML</td>
<td>Maximum likelihood</td>
</tr>
<tr>
<td>MLE</td>
<td>Maximum likelihood estimate</td>
</tr>
<tr>
<td>MLEs</td>
<td>Maximum likelihood estimates</td>
</tr>
<tr>
<td>MREL</td>
<td>Moment-ratio estimator under linear normalization</td>
</tr>
<tr>
<td>MREP</td>
<td>Moment-ratio estimator under power normalization</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean squared error</td>
</tr>
<tr>
<td>MSEs</td>
<td>Mean squared errors</td>
</tr>
<tr>
<td>MSEL</td>
<td>Mean squared error under linear normalization</td>
</tr>
<tr>
<td>MSEP</td>
<td>Mean squared error under power normalization</td>
</tr>
<tr>
<td>MS-laws</td>
<td>Class of max-stable laws</td>
</tr>
<tr>
<td>NERMN</td>
<td>National Environmental Radiation Monitoring Network</td>
</tr>
<tr>
<td>NCNSRC</td>
<td>National Center for Nuclear Safety and Radiation Control</td>
</tr>
<tr>
<td>NHP</td>
<td>New Hill plot</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrogen dioxide</td>
</tr>
<tr>
<td>PDF</td>
<td>Probability density function, also density function</td>
</tr>
<tr>
<td>PDFs</td>
<td>Probability density functions, also density functions</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate matter</td>
</tr>
<tr>
<td>PM10</td>
<td>PM of diameter less than 10 mm</td>
</tr>
<tr>
<td>POT</td>
<td>Peak over threshold</td>
</tr>
<tr>
<td>RLP</td>
<td>Return level plot</td>
</tr>
<tr>
<td>RV</td>
<td>Random variable</td>
</tr>
<tr>
<td>Notations and abbreviations</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>RVs</td>
<td>Random variables</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error</td>
</tr>
<tr>
<td>SP</td>
<td>Stability plot</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>Sulphur dioxide</td>
</tr>
<tr>
<td>STD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SI</td>
<td>Scale invariant</td>
</tr>
<tr>
<td>SC</td>
<td>Strong consistence</td>
</tr>
<tr>
<td>TCP</td>
<td>Threshold choice plot</td>
</tr>
<tr>
<td>UA</td>
<td>Uniform assumption</td>
</tr>
<tr>
<td>$\text{Var}(X)$</td>
<td>Variance of X</td>
</tr>
<tr>
<td>WC</td>
<td>Weak consistence</td>
</tr>
<tr>
<td>WHO</td>
<td>World health organization</td>
</tr>
<tr>
<td>$\overline{F} = 1 - F$</td>
<td>Survival function</td>
</tr>
<tr>
<td>\mathcal{R}</td>
<td>Real line</td>
</tr>
<tr>
<td>$\mathcal{N}(\mu, \sigma)$</td>
<td>Normal distribution with mean μ and variance σ</td>
</tr>
<tr>
<td>$\Phi(.)$</td>
<td>Standard normal distribution function</td>
</tr>
<tr>
<td>$\xrightarrow{\quad n\quad}$</td>
<td>Convergence, as $n \to \infty$</td>
</tr>
<tr>
<td>$\xrightarrow{\quad w\quad}$</td>
<td>Weak convergence, as $n \to \infty$</td>
</tr>
<tr>
<td>$\xrightarrow{\quad d\quad}$</td>
<td>Convergence in distribution, as $n \to \infty$</td>
</tr>
<tr>
<td>$\xrightarrow{\quad p\quad}$</td>
<td>Convergence in probability, as $n \to \infty$</td>
</tr>
<tr>
<td>$\xrightarrow{\quad a.s.\quad}$</td>
<td>Convergence almost surly, as $n \to \infty$</td>
</tr>
</tbody>
</table>
Illustrations

4.1 Mobile gas monitoring station used to monitor pollution over the course of a full year and provided by NCNSRC
4.2 Hourly average of particulate matter concentration for 10th of Ramadan
4.3 Hourly average of particulate matter concentration for 10th of Ramadan
4.4 Hourly average sulphur dioxide concentration for 10th of Ramadan
4.5 Hourly average sulphur dioxide concentration for Zagazig
4.6 Thirty minutes average ozone concentration for 10th of Ramadan
4.7 Fifteen-minute average gamma radiation level for Zagazig
4.8 Fifteen-minute average gamma radiation level for Zagazig
4.9 SO$_2$ in Zagazig
4.10 SO$_2$ in 10th of Ramadan
4.11 PM10 in Zagazig
4.12 PM10 in 10th of Ramadan
4.13 O$_3$ in 10th of Ramadan after bootstrap
4.14 Ambient gamma radiation in Zagazig after bootstrap
6.1 The relation between threshold selection and k
6.2 The threshold selection by using the MEPL for the River Nidd data. Vertical dashed lines mark these thresholds
6.3 The threshold selection by using the MEPP for the River Nidd data. Vertical dashed lines mark these thresholds
6.4 The threshold selection by using the HPL. Vertical dashed lines mark these thresholds
6.5 The threshold selection by using the TCP function for Nidd data
7.1 The left panel is the Hill plot of γ^{++}_{p}, with $k = 112$, and the right panel is the Hill plot of γ^{++}_{p}, with $k = 82$
7.2 The threshold selection using the New Hill plot for Nidd data
7.3 The Hill plot of γ^{++}_{PM}, with k=19
Illustrations

7.4 The Hill plot of $\gamma_{PM}^{+\succ}$, with $k=51$
7.5 The Hill plot of $\gamma_{PH}^{+\prec}$, with $k=94$
7.6 The Hill plot of $\gamma_{PH}^{+\succ}$, with $k=9$
7.7 Samples generated from GEVL ($0.10 \leq \gamma \leq 2.60$, $\mu = 7$, $\sigma = 1$): $n=100$, replicates=1000
7.8 Samples generated from GEVP($0.10 \leq \gamma \leq 2.60$): $n=100$, replicated=1000
8.1 Return level plot of two pollutants in the two cities
8.2 Four different plots: P-P plot, Q-Q plot, return level plot, and density plot of a daily period (24 hours) of PM10 in 10th of Ramadan
8.3 Four different plots: P-P plot, Q-Q plot, return level plot, and density plot of a daily period (24 hours) PM10 in Zagazig
8.4 Four different plots: P-P plot, Q-Q plot, return level plot, and density plot of a daily period (24 hours) SO$_2$ in 10th of Ramadan
8.5 Four different plots: P-P plot, Q-Q plot, return level plot, and density plot of a daily period (24 hours) SO$_2$ in Zagazig
8.6 Selection of the threshold of PM10 in 10th of Ramadan. The left, middle, and right panels indicate respectively γ_{ell}^{++}, $\gamma_{P}^{++\succ}$, and γ_{P}^{++}
8.7 Selection of the threshold of PM10 in Zagazig. The left, middle, and right panels indicate respectively γ_{ell}^{++}, $\gamma_{P}^{++\succ}$, and γ_{P}^{++}
8.8 Selection of the threshold of SO$_2$ in 10th of Ramadan. The left, middle, and right panels indicate respectively γ_{ell}^{++}, $\gamma_{P}^{++\succ}$, and γ_{P}^{++}
8.9 Selection of the threshold of SO$_2$ in Zagazig. The left, middle, and right panels indicate respectively γ_{ell}^{++}, $\gamma_{P}^{++\succ}$, and γ_{P}^{++}
8.10 Mean excess plot for selecting the threshold of PM10 in 10th of Ramadan. The left and the right panels indicate respectively the MEPL and the MEPP
8.11 Mean excess plot for selecting the threshold of PM10 in Zagazig. The left and the right panels indicate respectively the MEPL and the MEPP
8.12 Mean excess plot for selecting the threshold of SO$_2$ in 10th of Ramadan. The left and the right panels indicate respectively the MEPL and the MEPP
8.13 Mean excess plot for selecting the threshold of SO$_2$ in Zagazig. The left and the right panels indicate respectively the MEPL and the MEPP
9.1 Graphical representation of the data set and the fitted distribution $P_{1;\hat{\gamma}}(x; \hat{c}; \hat{a}, \hat{b})$
Tables

2.1 Domains of attraction of the most common distributions 29
3.1 Estimated GEVL and GEVP models, for F_1 91
3.2 Estimated GEVL and GEVP models, for F_2 91
3.3 Estimated GEVL and GEVP models, for $F_{3:1}$ 91
3.4 Generated data from $\mathcal{N}(\mu, \sigma = 1)$: bootstrap technique for quantiles 96
3.5 K-S Test: bootstrap technique for quantiles 97
3.6 Simulation study for $K = 1$ 106
3.7 Simulation study for $K = 2$ 106
4.1 Zagazig and 10th of Ramadan for GEVL 131
4.2 Zagazig and 10th of Ramadan for GEVL, after bootstrap 131
4.3 K-S test for the data with and without bootstrap 135
4.4 Simulation study for choosing a suitable number of POT (k)—k^* denotes the best value 136
4.5 Simulation study for choosing a suitable number of POT (k)—k^* denotes the best value 136
4.6 Simulation study for chosen m sub-sample bootstrap—m^* denotes the best value 137
4.7 Simulation study for chosen m sub-sample bootstrap—m^* denotes the best value 137
4.8 Zagazig and 10th of Ramadan for GPDL 138
4.9 Zagazig and 10th of Ramadan for GPDL after bootstrap 138
4.10 Zagazig and 10th of Ramadan for GEVL 138
5.1 Estimating the shape parameter γ in the GEVP($\gamma, 1, 1$), defined in (2.32), by using the ML method and the suggested estimate (5.3)—“*” in the superscript of a value means that this value is the best 146
5.2 Estimating the shape parameter γ in the GPDP, defined in (5.4), by using the ML method—“*” in the superscript of a value means that this value is the best 147
5.3 Estimating the shape parameter γ in the GPDP (5.4) by using the suggested estimate (5.11)—"∗" in the superscript of a value means that this value is the best 148

5.4 Estimate parameters of GEVP (5.4) by using the ML method for the sub-sample bootstrapping method 148

5.5 Estimating the shape parameter γ in the GEVP(0.4, 1, 1), defined in (5.4) by using the suggested estimate (5.3)—"∗" in the superscript of a value means that this value is the best 149

5.6 Estimating the shape parameter γ in the GEVP(0.2, 1, 1), defined in (5.4), by using the suggested estimate (5.3)—"∗" in the superscript of a value means that this value is the best 149

5.7 Estimating the shape parameter γ in the GEVP(0.1, 1), defined in (5.4), by using the suggested estimate (5.3)—"∗" in the superscript of a value means that this value is the best 150

5.8 Estimating the shape parameter γ in the GEVP(−0.2, 1, 1), defined in (5.4) by using the suggested estimate (5.3)—"∗" in the superscript of a value means that this value is the best 150

5.9 Estimating the shape parameter γ in the GEVP(−0.4, 1, 1), defined in (5.4) by using the suggested estimate (5.3)—"∗" in the superscript of a value means that this value is the best 151

5.10 Simulation study for estimate GEVL and GEVP by using the GA technique 153

6.1 Comparison between some desirable properties of HELs for EVI 159

6.2 Simulation output for assessing and comparing the estimators $\gamma_{\ell M}^{++}$ and $\gamma_{\ell M R}^{++}$ 166

7.1 Simulation output for assessing the estimators γ_{p}^{++} and $\gamma_{p}^{++\prec}$ 172

7.2 Simulation output for assessing the estimators $\gamma_{p}^{++\succ}$ and $\gamma_{p}^{+\succ\prec}$ 172

7.3 Simulation output for assessing the estimators $\gamma_{p}^{−\prec\succ}$ and $\gamma_{p}^{−\prec}$ 173

7.4 Simulation output for assessing the estimators $\gamma_{p}^{−\prec\succ}$ and $\gamma_{p}^{−\prec\succ\prec}$ 173

7.5 Simulation output for assessing the HEP γ_{p}^{++}, $\gamma > 0$ 181

7.6 Simulation output for assessing the HEP $\gamma_{p}^{+\succ}$, $\gamma < 0$ 181

7.7 Simulation output for assessing the HEP $\gamma_{p}^{+\succ}$, $\gamma > 0$ 182

7.8 Simulation output for assessing the HEP $\gamma_{p}^{−\prec}$, $\gamma < 0$ 182

7.9 Simulation output for assessing and comparing the HEPs $\gamma_{p}^{++\prec}$, $\gamma_{p}^{+\succ\prec}$, $\gamma_{p}^{+\succ\prec\prec}$, $\gamma_{p}^{++\prec\prec}$, $\gamma_{p}^{H\prec}$, $\gamma_{p}^{H\succ}$, and $\gamma_{p}^{++\succ}$ 185

7.10 Simulation output for assessing and comparing the HEPs $\gamma_{p}^{+\prec\succ}$, $\gamma_{p}^{+\prec\succ\prec}$, and $\gamma_{p}^{+\prec\prec}$ 186

7.11 Simulation output for assessing and comparing the HEPs $\gamma_{p}^{−\prec\succ}$, $\gamma_{p}^{−\prec\succ\prec}$, and $\gamma_{p}^{−\prec\succ\prec\prec}$ 187

7.12 Simulation output for assessing and comparing the HEPs $\gamma_{p}^{−\prec\prec}$, $\gamma_{p}^{−\prec\prec\prec}$, and $\gamma_{p}^{−\prec\prec\prec\prec}$ 188
7.13 Simulation output for assessing and comparing the estimators $\gamma_{++}^{+\prec}, \gamma_{PH}^{++}, \gamma_{PM}^{+\prec}$, and γ_{PMR}^{++}

7.14 Simulation output for assessing and comparing the estimators $\gamma_{P}^{++\succ}, \gamma_{PH}^{++\succ}, \gamma_{PM}^{+\succ}$, and $\gamma_{PMR}^{++\succ}$

7.15 Simulation output for assessing the criterion CVC for $\gamma_{E}^{+\succ}$

7.16 Simulation output for assessing the criterion CVC for $\gamma_{P}^{++\succ}$

8.1 Statistics summary of the two pollutants in the two cities

8.2 ML estimates for the shape parameter of the two pollutants in the two cities

8.3 The LRT of the two pollutants, p-value, and decision

8.4 Threshold selection by using HPL and HPP

8.5 MEPL and MEPP for selecting an appropriate threshold

8.6 Gomes and van Monfort test for GPDL and GPDP of PM10 in 10th of Ramadan

8.7 Gomes and van Monfort test for GPDL and GPDP of PM10 in Zagazig

8.8 Gomes and van Monfort test for GPDL and GPDP of SO2 in 10th of Ramadan

8.9 Gomes and van Monfort test for GPDL and GPDP of SO2 in Zagazig

8.10 Graphical methods of threshold selection of PM10

8.11 Graphical methods of threshold selection of SO2

8.12 Parameter estimates for the GP distribution of PM10, under linear and power normalizing constants

8.13 Parameter estimates for the GP distribution of SO2, under linear and power normalizing constants

8.14 Different estimates of the EVI for 10th of Ramadan under the linear and power models

8.15 Different estimates of the EVI for Zagazig under the linear and power models

8.16 Comparison between the linear and power models for pollutants PM10 and SO2

8.17 Estimates of the EVI of Danish fire insurance claims under linear and power normalizing constants

8.18 Comparison between the linear and power models

9.1 Summary statistics

9.2 Parameter estimation for maximum temperature

9.3 Descriptive statistics for maximum data for air pollution

9.4 The MLEs for the GEVL and GPDL models—the application of AIC and BIC

9.5 K-S test
Tables

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6</td>
<td>The MLEs for Box-Cox-GL model and the application of AIC and BIC</td>
<td>234</td>
</tr>
<tr>
<td>9.7</td>
<td>K-S test</td>
<td>234</td>
</tr>
<tr>
<td>9.8</td>
<td>The MLEs for GEVP and GPVP models—the application of AIC and BIC</td>
<td>235</td>
</tr>
<tr>
<td>9.9</td>
<td>K-S test</td>
<td>235</td>
</tr>
<tr>
<td>9.10</td>
<td>The MLEs for the Box-Cox-GP1 model and the application of the AIC and BIC</td>
<td>236</td>
</tr>
<tr>
<td>9.11</td>
<td>K-S test</td>
<td>236</td>
</tr>
<tr>
<td>A.1</td>
<td>Four HELs</td>
<td>239</td>
</tr>
<tr>
<td>A.2</td>
<td>Eight counterparts of HEPs</td>
<td>240</td>
</tr>
<tr>
<td>A.3</td>
<td>Four HEPs based on GPDP</td>
<td>241</td>
</tr>
<tr>
<td>A.4</td>
<td>Four moment estimators under power normalization</td>
<td>242</td>
</tr>
<tr>
<td>A.5</td>
<td>Four moment ratio estimators under power normalization</td>
<td>243</td>
</tr>
</tbody>
</table>
1

Introduction: Some basic and miscellaneous results

In practice, we usually do not know the true probability models of random phenomena, such as a human behaviour. George Box once said that there is no true model, but there are useful models. Even if there was a true probability model, we would never be able to observe it. Fortunately, in many cases a complicated situation can be replaced by a comparatively simple asymptotic model. The most important example of such cases is when the extremes govern the law of interest (e.g., air pollution, floods, strength of material, etc.). More precisely, the asymptotic theory of extreme order statistics provides approximate probability models that are not true but are definitely useful. Therefore, we must connect what we can observe with these approximate models. The key idea here is that we use a large set of observations (or a set of realizations) to figure out the approximate probability model given the data we have. Clearly, the cornerstone of the approximate probabilities model is the concept of the convergence in probability theory. In Section 1.1, we will discuss different types of convergence in the probability theory and statistics. On the other hand, some important tools of data treatments, such as the Maximum Likelihood Method, Genetic Algorithms (GA), and the Kolmogorov-Smirnov (K-S) test, are discussed in Sections 1.1 and 1.2.

1.1 The convergence concept in probability theory

There are several convergence concepts associated with the limiting behaviour of a sequence of RVs. Convergence in distribution (or weak convergence), convergence in probability, and almost sure convergence are the prominent ones. In the case of the sample mean, these concepts lead us to the classical central limit theorem, weak law of large numbers, and strong law of large numbers, respectively. In this book we will mostly be concerned with weak convergence results for order statistics. In the context of weak
convergence, we are interested in identifying the possible non-degenerate limit distributions for appropriately normalized sequences of RVs of interest. These limiting distributions can be of direct use in suggesting inference procedures when the sample size is large. These concepts and some required theorems of a purely analytical nature will be briefly discussed in this section. Throughout what follows the symbol \((\xrightarrow{n} \)) stands for convergence, as \(n \to \infty\).

1.1.1 Modes of convergence of RVs

Definition 1.1 (almost sure convergence) We say that a sequence of RVs \(X_1, X_2, \ldots\) converges to a RV \(X\) almost surely, written \(X_n \xrightarrow{a.s.} X\), if

\[
\{\omega \in \Omega : X_n(\omega) \xrightarrow{n} X(\omega)\}
\]

is an event whose probability is one, where \(X_n\) and \(X\) are defined on the same probability space \((\Omega, \mathcal{F}, P)\).

Definition 1.2 (convergence in probability) A sequence of RVs \(\{X_n\}\) is said to converge in probability to a RV \(X\), as \(n \to \infty\), written \(X_n \xrightarrow{p} X\), if for every \(\epsilon > 0\) we have \(P(|X_n - X| < \epsilon) \xrightarrow{n} 1\), or equivalently \(P(|X_n - X| \geq \epsilon) \xrightarrow{n} 0\).

Definition 1.3 (convergence in the \(r\)th mean) A sequence of RVs \(X_1, X_2, \ldots\) is said to converge in the \(r\)th mean, or in the norm \(||.||_r\), to a RV \(X\), written \(X_n \xrightarrow{\mathcal{L}^r} X\), if \(r \geq 1\), \(E|X_n|^r < \infty\), \(\forall n\), and

\[
\lim_{n \to \infty} E(|X_n - X|^r) = 0.
\]

The most important cases of convergence in \(r\)th mean are:

- When \(X_n\) converges in \(r\)th mean to \(X\), for \(r = 1\), we say that \(X_n\) converges in mean to \(X\).
- When \(X_n\) converges in \(r\)th mean to \(X\), for \(r = 2\), we say that \(X_n\) converges in mean square to \(X\).

Convergence in the \(r\)th mean, for \(r > 0\), implies convergence in probability (by Chebyshev’s inequality), while if \(r > s \geq 1\), convergence in \(r\)th mean implies convergence in \(s\)th mean. Hence, convergence in mean square implies convergence in mean.

Definition 1.4 (convergence in distribution or weak convergence) Assume that \(X_1, X_2, \ldots\) is a sequence of RVs with corresponding DFs \(F_1, F_2, \ldots\) and
1.1 The convergence concept in probability theory

the RV X has the DF F. We say that the sequence of RVs $\{X_n\}$ converges in distribution to the RV X, as $n \to \infty$, written $X_n \overset{d}{\to} X$ (or the sequence of DFs $\{F_n\}$ converges weakly to the DF F, as $n \to \infty$, written $F_n(x) \overset{w}{\to} F(x)$) if $F_n(x)$ converges pointwise to $F(x)$ at all continuity points of F, that is $F_n(x) \to F(x)$ at all points x, where F is continuous.

Remark Many authors avoid using the notation $X_n \overset{d}{\to} X$, since weak convergence pertains only to the DF of X and not to X itself. However, we only use this notation in this section for the sake of notation uniformity; however, in the sequel we will use the notation $F_n(x) \overset{w}{\to} F(x)$.

Remark Unless otherwise stated, we assume that the limiting function $F(x)$ is non-degenerate proper DF, i.e., that there exists a real number x such that $0 < F(x) < 1$ and $F(\infty) - F(-\infty) = 1$, in this case, we say that $F_n(x)$ converges properly to $F(x)$ or simply $F_n(x)$ converges weakly to $F(x)$. On the contrary, if $F(\infty) - F(-\infty) < 1$, $F(x)$ will be called improper DF and in this case the aforesaid convergence will be called improper convergence.

Some important relations between the modes of convergence are given in the next theorems.

Theorem 1.5 Assume that X_1, X_2, \ldots, X_n are RVs on the same probability space (Ω, \mathcal{F}, P). If so, the following implications hold:

- If $X_n \overset{a.s.}{\to} X$, then $X_n \overset{p}{\to} X$.
- If $X_n \overset{p}{\to} X$, then $X_n \overset{d}{\to} X$.
- If $X_n \overset{r}{\to} X$, then $X_n \overset{p}{\to} X$.

Theorem 1.6 (Continuous Mapping Theorem) Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of RVs, $f : \mathcal{R} \to \mathcal{R}$ be a continuous function, and X be an RV.

- If $X_n \overset{a.s.}{\to} X$, then $f(X_n) \overset{a.s.}{\to} f(X)$.
- If $X_n \overset{d}{\to} X$, then $f(X_n) \overset{d}{\to} f(X)$.
- If $X_n \overset{p}{\to} X$, then $f(X_n) \overset{p}{\to} f(X)$.

The preceding results hold equivalently for a sequence of random vectors and matrices. Also, an important special case here is that $X = c$, where $c \in \mathcal{R}$. In this case, we get $f(X_n) \overset{a.s.}{\to} f(c)$, if $X_n \overset{a.s.}{\to} c$. Similarly, if $X_n \overset{p}{\to} c$, then $f(X_n) \overset{p}{\to} f(c)$.

Theorem 1.7 (Slutzky’s Theorem) Let $X_n \overset{d}{\to} X$ and $Y_n \overset{p}{\to} C$, where $C \in \mathcal{R}$ is a constant. Then, $Y_nX_n \overset{d}{\to} CX$ and $X_n + Y_n \overset{d}{\to} X + C$.
An important special case of Theorem 1.7 is that if $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} 0$, then $X_n + Y_n \xrightarrow{d} X$. In this case, we say that $Z_n = X_n + Y_n$ and X_n are asymptotically equivalent because $Z_n - X_n \xrightarrow{p} 0$. Clearly, Slutzky’s theorem, as well as the convergence concepts, can be readily extended to random vectors and random matrices.

Theorem 1.8 If $F_n \xrightarrow{w} F$ and F is continuous, then
\[
\sup_x |F_n(x) - F(x)| \xrightarrow{n} 0,
\]
which means that the convergence is uniform with respect to x.

1.1.2 Further limit theorems on weak convergence

The meaning of any limit theorem for a random sequence $\{X_n\}$ is that it gives a sufficiently simple approximation to the DF $F_n(x) = P(X_n < x)$. Namely, let $F_n(G_n(x)) = P(G_n^{-1}(X_n) < x) \xrightarrow{w} P(X < x)$, where $G_n(.)$ is a monotone continuous function (we may take $G_n(x) = a_n x + b_n$) and $G_n^{-1}(.)$ is the inverse of G_n. If the limit $F(x) = P(X < x)$ is continuous, then Theorem 1.8 implies that
\[
\epsilon_n = \sup_x |P(G_n^{-1}(X_n) < x) - P(X < x)| = \rho(G_n^{-1}(X_n), X) \xrightarrow{n} 0.
\]
Since the metric ρ is invariant with respect to strongly monotone continuous transformations of RVs, we have
\[
\rho(X_n, G_n(X)) = \epsilon_n \xrightarrow{n} 0,
\]
i.e., we receive a uniform approximation to $P(X_n < x) = F_n(x)$ by means of some universal DF of the RV X (see Pancheva, 1984). Such a viewpoint to the limit theorems deprives the traditionally linear transformation of its exclusiveness. Thus, it makes sense to extend the class of normalizing transformations, $\{G_n(x)\}$, to any strongly monotone continuous transformations for constructing a simplified approximation if only one can prove a suitable limit theorem. Chapter 5 will rely on this idea. The next result gives equivalent characterizations of the weak convergence.

Theorem 1.9 If ψ and $\{\psi_n\}$ are the characteristic functions with the DFs F and $\{F_n\}$, respectively, then the following statements are equivalent:

(i) $F_n \xrightarrow{w} F$;

(ii) $\psi_n(t) \xrightarrow{n} \psi(t)$, for every $t \in \mathbb{R}$;

(iii) $\int g(x) dF_n(x) \xrightarrow{n} \int g(x) dF(x)$ for every bounded continuous function g.

Let F and F_n be the DFs of the RVs X and X_n, respectively (notice that X_1, X_2, \ldots and X need not to be defined on the same probability space). Let $F_n \xrightarrow{w} F$ (or equivalently $X_n \xrightarrow{d} X$). Then, in this case, the DF F is usually called the asymptotic (or limiting) distribution of the sequence X_n. Clearly, the convergence in distribution depends only on the involved DFs and does not require that the relevant RVs approximate each other. However, the only relationship between the weak convergence and the convergence in probability is given in the following theorem.

Theorem 1.10 If $X_n \xrightarrow{d} C$, where C is a constant, then $X_n \xrightarrow{p} C$.

The following definition and theorem, due to Helly (see Feller, 1979), are basic tools in studying the weak convergence of the sequence of DFs.

Definition 1.11 Let $\{X_n\}$ be a sequence of RVs with corresponding DFs $\{F_n\}$. Then, the sequences $\{X_n\}$ and $\{F_n\}$ are said to be stochastically bound, if for each $\epsilon > 0$, there exists a number c such that

$$P(|X_n| \geq c) < \epsilon,$$

for all sufficiently large n.

Theorem 1.12

(A) Every sequence of DFs $\{F_n\}$ possesses a subsequence $\{F_{n_k}\}$, that converges (properly or improperly) to a limit F (remember that the improper convergence means that the limit is an extended DF, i.e., $F(\infty) - F(-\infty) < 1$).

(B) In order that all such limits be proper it is necessary and sufficient that $\{F_n\}$ be stochastically bounded.

(C) In order that $F_n \xrightarrow{w} F(x)$, it is necessary and sufficient that the limit of every convergence subsequence equals F.

We will end this section with an important known theorem, which will be needed in the sequel.

Theorem 1.13 (Khinchin’s type theorem) Let $F_n(x)$ be a sequence of DFs. Furthermore, let

$$F_n(G_n(x)) \xrightarrow{w} F(x),$$

with $G_n(x) = a_n x + b_n, a_n > 0$. Then, with $G^*_n(x) = c_n x + d_n, c_n > 0$, we have

$$F_n(G^*_n(x)) \xrightarrow{w} F^*(x), \text{ } F^* \text{ is a non-degenerate DF},$$

if and only if $G_n^{-1}(G^*_n(x)) = G_n^{-1} o G^*_n(x) \xrightarrow{w} g(x), \forall x$, where $g(x) = ax + b, \xrightarrow{a} a, \xrightarrow{d_n/b_n} b$ and $F^*(x) = F(g(x))$.

Theorem 1.13 leads to the following definition:
Definition 1.14 We say that the DFs \(G(x) \) and \(G^*(x) \) are of the same type, under linear transformation, if there are real numbers \(A \) and \(B > 0 \) such that

\[
G^*(x) = G(Ax + B).
\]

Clearly the relation between \(G \) and \(G^* \) in Definition 1.14 is symmetrical, reflexive, and transitive. Hence, it gives rise to equivalence classes of DFs. Sometimes we shall indicate a type by one representative of the equivalence classes. These facts convince us that the probability limit theory basically deals with the types of DFs rather than the DFs themselves.

Remark (Why the weak convergence mode?) It is natural to wonder why we use weak convergence in statistical modelling, although it is the weakest mode of convergence. Actually, Barakat and Nigm (1996) have investigated the mixing property of order statistics. The notion of mixing sequences of RVs was first introduced by Rényi (1962, 1970). In the sense of Renyi, a sequence \(\{X_n\} \) of RVs is called mixing if for any event \(E \) of positive probability, the conditional DF of \(X_n \) under the condition \(E \) converges weakly to a non-degenerate DF, which does not depend on \(E \). Barakat and Nigm (1996) have shown that any sequence of order statistics (extreme, intermediate, and central), under linear normalization, is mixing. On the other hand, they also showed in the same work that any mixing sequence of RVs \(X_1, X_2, ..., X_n \) cannot converge in probability to an RV \(X_\infty \) that has non-degenerate DF. This simply means that any sequence of order statistics, particularly the sequence of extreme order statistics, cannot converge in probability to any RV with non-degenerate DF (except for convergence in probability to a constant) and the only available mode of convergence is the weak convergence.

1.2 Statistical methods

1.2.1 Maximum likelihood method

A general and flexible method of estimation of the unknown parameter \(\theta \) within a family \(F \) is the maximum likelihood method. Each value of \(\theta \in \Theta \) defines a model in \(F \) that attaches (potentially) different probabilities (or probability densities) to the observed data. The probability of the observed data as a function of \(\theta \) is called the likelihood function. Plausible values of \(\theta \) should have a relatively high likelihood. The principle of maximum likelihood estimation is choosing the model with greatest likelihood, among all the models under consideration, i.e., this is the one that assigns highest probability to the observed data.
To see this in greater detail, we can refer back to the situation in which we have a data set X whose density is defined by some d-dimensional parametric model with parameter $\theta = (\theta_1, ..., \theta_d)$. Write the density evaluated at $X = x$ in the form

$$f(x; \theta).$$

The likelihood function for θ based on the data X is just $f(x; \theta)$ interpreted as a function of θ. Usually, we work with the log likelihood

$$\ell_X(\theta) = \log[f(x; \theta)].$$

The maximum likelihood estimate (MLE) $\hat{\theta}$ (of the parameter θ) is the value of θ which maximizes $\ell_X(\theta)$. Usually, we assume $\ell_X(\theta)$ is differentiable with a unique interior maximum, so the MLE is given by solving the likelihood equations

$$\frac{\partial \ell_X(\theta)}{\partial \theta_j} = 0, \ j = 1, ..., d.$$

For the maximization of $\ell_X(\theta)$, for a general model indexed by θ, this may be performed using a packaged nonlinear optimization subroutine, of which several excellent versions are available.

Example 1.15 Consider the general extreme value DF under linear normalization (GEVL)

$$G_\gamma(x; \mu, \sigma) = \exp \left\{ - \left[1 + \gamma \left(\frac{x - \mu}{\sigma} \right) \right]^{-\frac{1}{\gamma}} \right\} \quad (1.1)$$

defined on $\{ x : 1 + \gamma (x - \mu) / \sigma > 0 \}$. In this distribution γ is a shape parameter, μ is a location parameter and σ is a scale parameter. This DF is the foremost pillar of the statistical modelling of extreme value data under linear normalization that will be discussed in detail in Chapter 4. For the GEVL (1.1), the density $g(x; \mu, \sigma, \gamma)$ is obtained by differentiating $G_\gamma(x; \mu, \sigma)$ with respect to x. The likelihood function based on observations $x_1, ..., x_k$ is

$$\prod_{i=1}^{k} g(x_i; \mu, \sigma, \gamma)$$

and so the log likelihood is given by

$$\ell_X(\mu, \sigma, \gamma; x) = -k \log \sigma$$

$$+ \sum_{i=1}^{k} \left\{- \left[1 + \gamma \left(\frac{x_i - \mu}{\sigma} \right) \right]^{-\frac{1}{\gamma}} - \left(1 + \frac{1}{\gamma} \right) \log \left[1 + \gamma \left(\frac{x_i - \mu}{\sigma} \right) \right] \right\}, \quad (1.2)$$
Introduction: Some basic and miscellaneous results

provided \(\{1 + \gamma(x_i - \mu)/\sigma > 0\}\) for each \(i\); otherwise, (1.2) is undefined. The following practical points should be considered for this example:

1. Although the maximization is unconstrained, there are some practical constraints. For example, (1.2) requires \(\gamma > 0\) as well as \(\{1 + \gamma(x_i - \mu)/\sigma > 0\}\) for each \(i\). It is advisable to test explicitly for such violations and to set \(-\ell_X(\theta)\) equal to some very large value if the conditions are indeed violated.

2. All Newton-type routines require the user to supply starting values, but the importance of good starting values can be overemphasized. Simple guesses usually suffice, e.g., in (1.2), one might set \(\mu\) and \(\sigma\) equal to the sample mean and sample standard deviation respectively, with \(\gamma\) equal to some crude guess value such as 0.1. However, it is important to check that the initial conditions are feasible and this can sometimes not be so easy to achieve.

3. In cases of doubt about our application, where a true maximum has been found, the algorithm may be re-run from different starting values. If the results are highly sensitive to starting values, this is indicative that the problem may have multiple local maxima, or alternatively that a mistake has been made in programming.

A few further comments are necessary regarding the specific application of numerical MLE to the GEVL family. There is a singularity in the likelihood for \(\gamma < 0\), as \(\mu \to X_{max} = \max(X_1, ..., X_k)\) in (1.2) and the effect is that \(\ell_X(\theta) \to \infty\). However, in the most practical cases, there is a local maximum (of \(\ell_X(\theta)\)) that is some distance from the singularity and the presence of the singularity does not interfere with the convergence of the nonlinear optimization algorithm to the local maximum. In this case, the correct procedure is to ignore the singularity and use the local maximum. However, it is possible that no local maximum exists and the singularity dominates. In this case, MLE fails and some other method must be sought. However, this very rarely happens with environmental data. Finally, we should say something about the theoretical status of the approximations involved. The asymptotic theory of MLE for the GEVL model is valid provided \(\gamma > -0.5\) (cf. Smith, 1985). Cases with \(\gamma \leq -0.5\) correspond to an extremely short upper tail and hardly ever occur in environmental applications. A more serious problem is that even when \(\gamma > -0.5\), the asymptotic theory may give rather poor results with small sample sizes, see Hosking et al. (1985).

In summary: it is possible that MLEs will fail either numerically or in terms of their asymptotic properties, especially if the sample size is small. The user should be aware of their possible difficulties but should not be
deterred from using these extremely powerful and general methods. For more
details about this subject, see Prescott and Walden (1980, 1983), Mached
(1989), and Smith (1985).

An alternative method for quantifying the uncertainty in the MLE is based
on the deviance function, or the likelihood ratio test (LRT) (see Theorems
2.6 and 2.7 in Coles, 2001), which is defined by

\[LRT = -2(\log L_0 - \log L_1), \]

where \(\log L_0 \) and \(\log L_1 \) are the values of the log-likelihood under the null
and alternative hypothesis, respectively. The statistic \(LRT \) is distributed as
\(\chi^2_n \), with degrees of freedom equal to the number of restrictions under the
null hypothesis. The method of the LRT is summarized as follows:

1. Let \(L_0(M_0) \) and \(L_1(M_1) \) be the maximized values of the log-likelihood
 for models \(M_0 \) and \(M_1 \), respectively.
2. Test of the validity of model \(M_0 \) relative to \(M_1 \) at a suitable chosen level
 of significance.

Reject \(M_0 \) in favour of \(M_1 \) if \(LRT = -2(\log L_0 - \log L_1) > c_\alpha \), where \(c_\alpha \) is
the \((1 - \alpha)\) quantile of the \(\chi^2_n \) distribution.

\[1.2.2 \text{ Kolmogorov-Smirnov (K-S) test} \]

In statistics, the K-S test is a nonparametric test of the equality of con-
tinuous one-dimensional DFs that can be used to compare a sample with a
reference DF (one-sample K-S test), or to compare two samples (two-sample
K-S test). It is named after Andrey Kolmogorov and Nikolai Smirnov.

The K-S statistic quantifies a distance between the empirical DF of the
sample and the DF of the reference distribution, or between the empirical
DFs of two samples. The null distribution of this statistic is calculated under
the null hypothesis that the sample is drawn from the reference distribution
\(\hat{F}(x) \) (in the one-sample case) or that the samples are drawn from the same
distribution (in the two-sample case). In each case, the considered distrib-
itions under the null hypothesis are continuous DFs, but are otherwise
unrestricted.

Let \(X_1, X_2, ..., X_n \) be independent and identically random sample dis-
tributed under the null-hypothesis \(H_0 \), as \(F_0 \). Therefore, the K-S test statistic
\(D_n \) is defined by

\[D_n = \sup_x |F_0(x) - F_n(x)|, \]
where sup x is the supremum of the set of distances and $F_n(x)$ is the empirical DF that increases by $\frac{1}{n}$ at each data value. Namely,

$$F_n = \frac{1}{n} \sum_{i=1}^{n} I_{[-\infty,x]}(X_i),$$

where $I_{[-\infty,x]}(X_i)$ is the indicator function, which is equal to 1 if $X_i \leq x$ and is equal to 0 otherwise. By the Glivenko-Cantelli theorem, if the sample comes from the DF $F_0(x)$, then the statistic D_n converges to 0 almost surely in the limit when n goes to infinity. Kolmogorov strengthened this result, by effectively providing the rate of this convergence. In practice, the statistic requires a relatively large number of data points to properly reject the null hypothesis.

The K-S statistic has been used for goodness-of-fit testing for continuous populations for decades, although other tests have made slight improvements in terms of power. The K-S test appeal includes the straightforward computation of the test statistic and the distribution-free characteristic of D_n. Its drawback is that the DF of D_n, under the null hypothesis (i.e., the assumption that data was drawn from a population with DF $F_0(x)$), is difficult to determine, leaving one to calculate critical values with various approximation methods. An algorithm for computing the distribution of D_n, for small to moderate values of n, was given by Drew et al. (2000). As the supremum must be achieved at a data value, the computational formula for computing D_n is $D_n = \max_x (D_n^+, D_n^-)$, where

$$D_n^+ = \sup_x [F_n(x) - F_0(x)] = \max \left[\max_{1 \leq i \leq n} \left\{ \frac{i}{n} - F_0(X_{i:n}) \right\}, 0 \right],$$

$$D_n^- = \sup_x [F_0(x) - F_n(x)] = \max \left[\max_{1 \leq i \leq n} \left\{ F_0(X_{i:n}) - \frac{i - 1}{n} \right\}, 0 \right]$$

and $X_{1:n}, X_{2:n}, ..., X_{n:n}$ are the order statistics corresponding to the random sample $X_1, X_2, ..., X_n$. The maximum positive difference, D_n, detects the largest vertical deviation between the two DFs, where the fitted DF $F_0(x)$ is below the empirical DF. Likewise, the maximum negative difference detects the largest vertical deviation between the two DFs, where the fitted DF is above the empirical DF. The smallest value of D_n that can be achieved is 1/2, which corresponds to the DF of the fitted DF $F_0(x)$ bisecting all the risers of the steps associated with the empirical DF.

Assume we have the random sample $X_1, X_2, ..., X_n$ and the hypothesis-testing situation $H_0 : F_X(x) = F_0(x)$, for all x, where $F_0(x)$ is a completely specified continuous DF. The differences between $F_X(x)$ and $F_0(x)$ should be