Everything You Need to Know About Black Holes
What are black holes? They may hold the key to unifying Einstein’s gravity and quantum mechanics. Are they the final stage of a collapsing star? Or do primordial black holes reveal a different origin? This book presents the latest insights into these enormous challenges.
This lucid analysis of quantum mechanics emphasizes the fundamentals using Dirac’s notation. It explains the latest topics, like Quantum Computing, and features a rich collection of solved examples. This comprehensive text is ideal for graduate and research students in physics.
This book is a monograph on Albert Einstein’s odyssey to Special and General Relativity. Bringing together recent studies, it offers an in-depth analysis of the genesis of his theories, Einstein’s own derivations, and the philosophical perspectives of his work.
This textbook provides an introduction to physics for undergraduate students of geology and Earth sciences. It explains basic physics theories first, which are then applied to geological phenomena, using accessible math with figures and solved problems.
Explore technology by understanding the fundamental principles of physics. For first-year Engineering and BSc courses, this book uses simple English and illustrations from everyday life to explain core concepts. With simplified derivations, solved problems, exercises, and MCQs.
This book offers a clear introduction to digital electronics. Written in simple language, it breaks down complex concepts with diagrams, solved examples, and numerous practice questions for self-assessment. Ideal for students, teachers, and independent study.
This book presents 10 actions for practical results in seismology. Through statistical analysis, we can estimate the probability of the next earthquake and identify foreshocks. From seismic waves, we can deduce an earthquake’s energy, magnitude, and the fault’s orientation.
Sound is a major tool for studying the ocean environment and marine life. Understanding Ocean Acoustics focuses on environmental research using low frequencies relevant to fish and sea mammals, covering geoacoustic properties missing in most books on underwater acoustics.
This introductory physics course is for first-year engineering students. Based on the authors’ teaching experiences, it covers classical mechanics, oscillation, radiation, thermodynamics, and fluidics to ease the transition for students who struggle with the topic.
The Trinity of Mass and Newton’s Way
This book argues that physics has only one concept of mass, an idea that originates not with Einstein, but with Isaac Newton. In his Principia, Newton introduced mass as a single measure of inertia, weight, and gravity. So why was this true legacy so profoundly misunderstood?
Many-body Theory
This book presents a theory of many interacting fermions, relating Landau’s theory of the normal Fermi liquid to quantum-mechanical effects. It derives the interaction function, investigates the validity of the quasiparticle concept, and estimates the ground-state energy.
This book describes physical effects caused by impurity atoms that localize electrons and phonons in nanosystems. It presents the first-ever application of the method of local perturbations to describe the physical properties of a wide range of nanosystems.
Explore the quantum realm of 2D materials. From graphene to transition metal dichalcogenides, delve into their fundamental properties and applications in nanoelectronics, optoelectronics, and quantum computing. Uncover the latest breakthroughs with insights from leading experts.
Post-Newtonian Hydrodynamics
This book develops post-Newtonian kinetic and phenomenological theories, deriving hydrodynamic equations and exploring astrophysical applications like stellar structure, Jeans instability, and galaxy rotation curves. For physicists, astrophysicists, and advanced students.
This book introduces reactor physics in a simple, intuitive way. It explains key mathematical concepts without losing scientific rigour, making it ideal for getting started with radioactivity calculations or basic problems in reactor physics.
This book explores quantum-mechanical scattering in macroscopic targets and the conditions for coherent scattering on a macroscopic scale. It introduces coherence domains and examines their role in scattering, emphasizing the momentum and energy transfer to the target.
This book explores the mechanics of smart nanocomposite sandwich plates, covering theories of buckling, vibration and dynamic instability. It presents models for material properties and derives governing equations using the energy method and Hamilton’s principle.
Pyrometers are calibrated for blackbodies (BB), but real objects radiate differently, causing measurement errors. This book proposes original correction methods that account for an object’s radiation spectrum and its temperature dependence to increase the accuracy of pyrometry.
The unique experiments, numerous measurements, and resulting data presented here, have been collected over 30 years of research and prove with scientific precision, that consciousness involves more than just the brain, but actually depends on the very fabric of the universe.
This textbook is a unique treatise on the present status of particle physics summarised for physics students at an introductory level: it provides insights into essential experimental and theoretical techniques and will gradually deepen the reader’s understanding of the field.