This book presents 10 actions for practical results in seismology. Through statistical analysis, we can estimate the probability of the next earthquake and identify foreshocks. From seismic waves, we can deduce an earthquake’s energy, magnitude, and the fault’s orientation.
Post-Newtonian Hydrodynamics
This book develops post-Newtonian kinetic and phenomenological theories, deriving hydrodynamic equations and exploring astrophysical applications like stellar structure, Jeans instability, and galaxy rotation curves. For physicists, astrophysicists, and advanced students.
This book describes physical effects caused by impurity atoms that localize electrons and phonons in nanosystems. It presents the first-ever application of the method of local perturbations to describe the physical properties of a wide range of nanosystems.
This book addresses the complex N-body problem, providing a general approach to show that many mass configurations can be solved deterministically. It gives the reader the tools to master binary, trinary, and quadruple structured configurations for real and theoretical work.
Many-body Theory
This book presents a theory of many interacting fermions, relating Landau’s theory of the normal Fermi liquid to quantum-mechanical effects. It derives the interaction function, investigates the validity of the quasiparticle concept, and estimates the ground-state energy.
This book is devoted to a quasi-classical treatment of quantum transitions, with an emphasis on magnetic and electric dipolar resonance. In addition to known results, it presents parametric resonance for electric dipoles, which may lead to spontaneous electric polarization.