Post-Newtonian Hydrodynamics
This book develops post-Newtonian kinetic and phenomenological theories, deriving hydrodynamic equations and exploring astrophysical applications like stellar structure, Jeans instability, and galaxy rotation curves. For physicists, astrophysicists, and advanced students.
This book covers the diffraction, radiation, and propagation of elastic waves in isotropic and anisotropic media. It details key methods and their application to hydroacoustic antennas, loudspeakers, and the acoustic monitoring of oil products.
This book describes physical effects caused by impurity atoms that localize electrons and phonons in nanosystems. It presents the first-ever application of the method of local perturbations to describe the physical properties of a wide range of nanosystems.
This book addresses the complex N-body problem, providing a general approach to show that many mass configurations can be solved deterministically. It gives the reader the tools to master binary, trinary, and quadruple structured configurations for real and theoretical work.
With an irreverent tone, the author debunks modern physics using common sense and experimental evidence. He proposes a new unifying model where all events are connected, from the subatomic to galaxies. This provocative read requires no advanced scientific knowledge.
From Nonlinear Dynamics to Trigonometry’s Magic
This book unravels the mathematics of nonlinear dynamics using simple trigonometry. A tutorial for beginners and experts, it examines the fundamental example of Chaos, the Lorenz-Haken equations, with an original approach. For physicists, mathematicians, and students alike.
Geometric and Wave Optics
A comprehensive course covering geometric, wave, and quantum optics, with applications and devices. Featuring clear diagrams, it offers detailed explanations with a physical approach and precise mathematical formalism. For undergraduate students, engineers, and researchers.
Many-body Theory
This book presents a theory of many interacting fermions, relating Landau’s theory of the normal Fermi liquid to quantum-mechanical effects. It derives the interaction function, investigates the validity of the quasiparticle concept, and estimates the ground-state energy.
This book explores the nonlinear features of natural phenomena through mathematical models. It focuses on practical methods to investigate these problems, presenting approaches applicable to a wide class of nonlinear equations and guiding even uninitiated readers.
This book explores the mechanics of smart nanocomposite sandwich plates, covering theories of buckling, vibration and dynamic instability. It presents models for material properties and derives governing equations using the energy method and Hamilton’s principle.
Einstein’s geometric time versus Bergson’s experienced duration. Are they two separate entities? Relying on research into space-time and the philosophy of mind, this book posits that the physical world evolves predictably and examines if our relationship to time can be modified.
This book introduces reactor physics in a simple, intuitive way. It explains key mathematical concepts without losing scientific rigour, making it ideal for getting started with radioactivity calculations or basic problems in reactor physics.
This book shows the objective beauty of science, from the micro- and macrocosm to the fundamental constants of the universe. It examines the human organism as a system and explores ways to transition from a state of “illness” to a state of “health”.
This book proposes a model of light knot electronic structure, challenging the interpretation of quantum entanglement and proving a paradox in the uncertainty relationship. It establishes the foundation for a deterministic, local-realism quantum mechanics.
Explore the quantum realm of 2D materials. From graphene to transition metal dichalcogenides, delve into their fundamental properties and applications in nanoelectronics, optoelectronics, and quantum computing. Uncover the latest breakthroughs with insights from leading experts.
This book is a monograph on Albert Einstein’s odyssey to Special and General Relativity. Bringing together recent studies, it offers an in-depth analysis of the genesis of his theories, Einstein’s own derivations, and the philosophical perspectives of his work.
This book presents insights into manganese oxides, materials with important technological applications in magnetic refrigeration and sensors. With elegant and didactic mathematical proofs, it will interest both researchers and the general reader interested in the subject.
This introductory physics course is for first-year engineering students. Based on the authors’ teaching experiences, it covers classical mechanics, oscillation, radiation, thermodynamics, and fluidics to ease the transition for students who struggle with the topic.
This book is devoted to a quasi-classical treatment of quantum transitions, with an emphasis on magnetic and electric dipolar resonance. In addition to known results, it presents parametric resonance for electric dipoles, which may lead to spontaneous electric polarization.
General Relativity Conflict and Rivalries
Galina Weinstein investigates Albert Einstein and his interactions with various scientists, focusing on their implicit and explicit responses to his work. This analysis reveals the central figures who influenced Einstein during his work on the general theory of relativity.